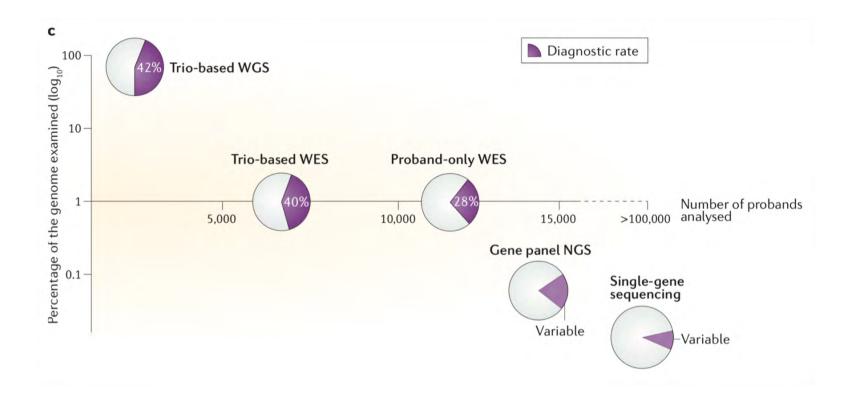


Accurate and Rapid Genome Interpretation – in clinical care

Martin Reese, Ph.D. Founder and CEO

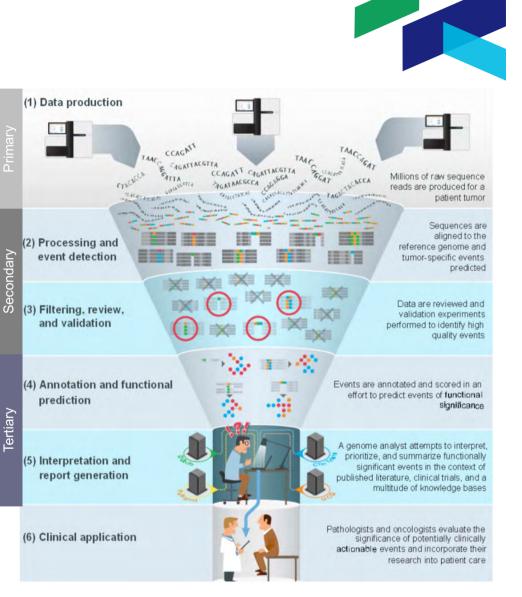

Overview

- Optimized variant ranking VAAST/Phevor ready to scale
 - For Clinical Diagnostics and Gene Discovery on a population scale
- Collaborative clinical variant sharing for improved diagnosis
- Two clinical genomics examples
 - Undiagnosed genetic disease patients Genomics England 100,000 Genome Project
 - First line diagnosis for NICU/ICU babies –Rady's Children Hospital (Dr. Kingsmore)

Diagnostic rate of genetic diseases

Wright, C. F., FitzPatrick, D. R. & Firth, H. V. Paediatric genomics: diagnosing rare disease in children. *Nature Publishing Group* **10**, 1–16 (2018).

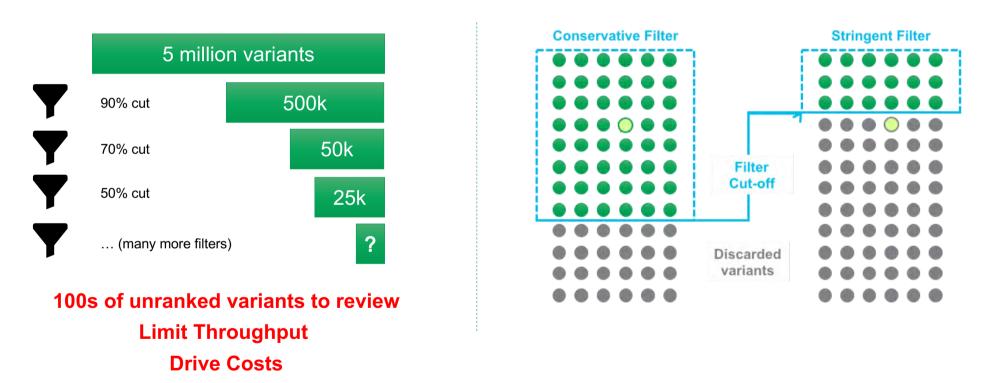
The Genomic Challenge Now is *Analyzing* and *Interpreting* all of the Data


"A high quality clinical genome is now <\$2,000 but it takes **200 person hours** for interpretation, which is more than **\$20,000**"

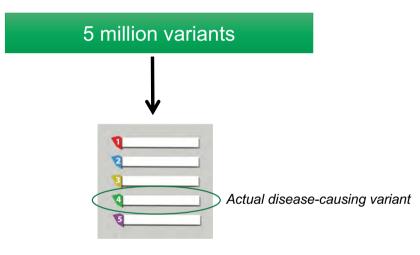
Michael Snyder, Director Genomics & Personalized Medicine, Stanford

Fabric Genomics, Inc.

Variant Interpretation


- How do we find the variants important for the disease or phenotype of the patient(s)?
- How do we find the important variants quickly, reliably, and reproducible?
- How do we find the important variants at scale?

WGS/WES uncovers a huge amount of information Which findings actually matter?



Conventional Analysis - Filtering

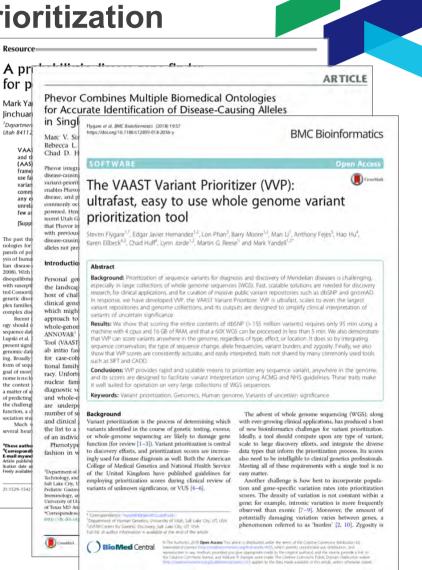
Can easily spend days interpreting un-prioritized candidates for a single case

Alternative Variant Prioritization: Automatization without filtering caveats

Algorithm-Driven Prioritization

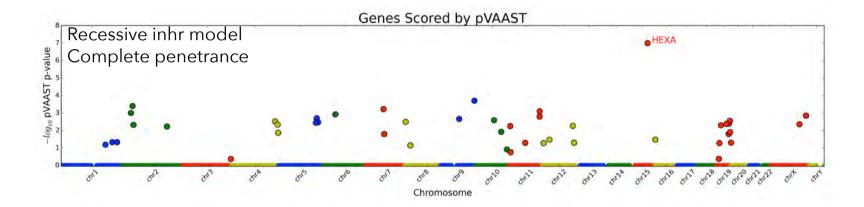
Result: Specific ranked list of variants to review Diagnostic candidate consistently near top

- Combine phenotype, disease and genotype information for phenotype driven prioritization
- harmonize information across hundreds of sources
- Algorithmic methods provide complementary data points



VAAST-Phevor Algorithms for Variant Prioritization

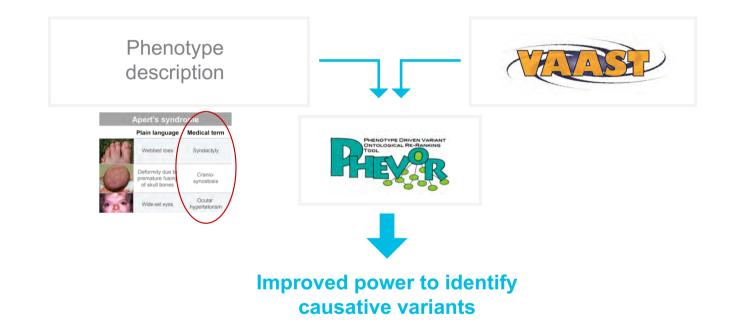
Peer-Reviewed and Clinically Validated


- VAAST: Evaluate and rank every variant based on effect, conservation and frequency
- Phevor: Re-prioritize variants based on patient's phenotype
- Validated, Published and Clinically Proven for phenotype driven genome-wide variant prioritization

VAAST-Phevor has been shown to consistently elevate the causative variant to the top

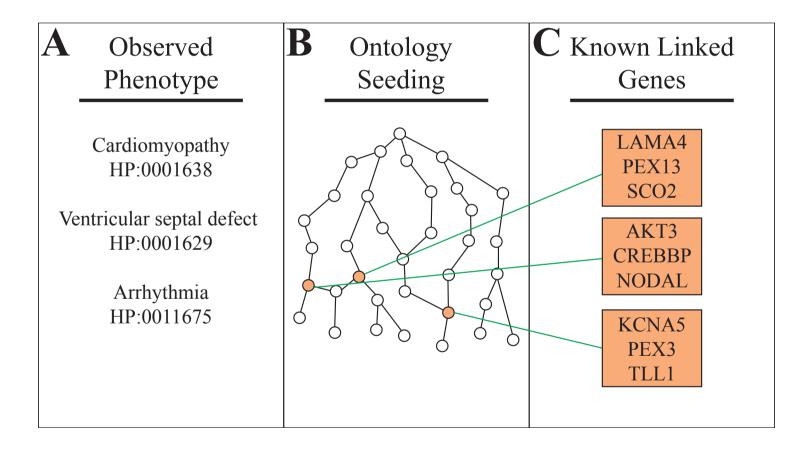
VAAST, Families and Disease

A family with a Tay-Sachs affected child

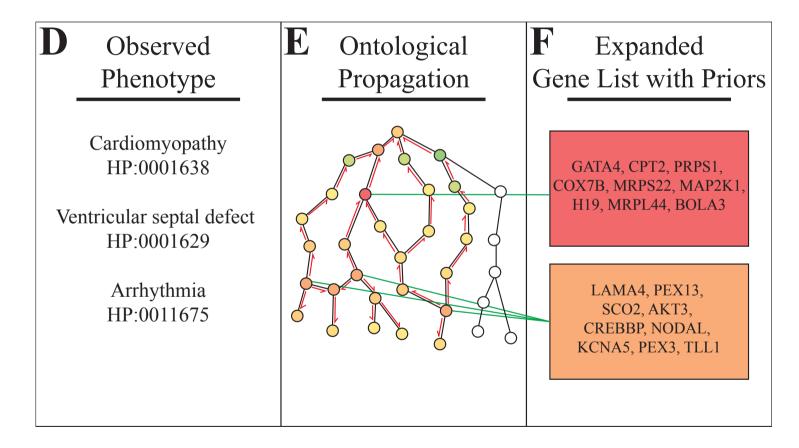

Patient phenotype (symptoms) are big clues

	Plain language	Medical term
	Webbed toes	Syndactyly
	Deformity due to premature fusing of skull bones	Cranio- synostosis
000	Wide-set eyes	Ocular hypertelorism

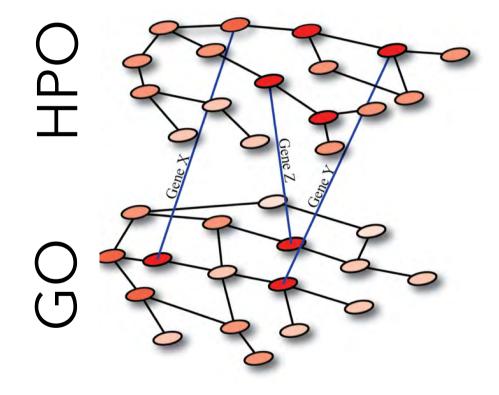
Phevor Combines Phenotype and Genotype

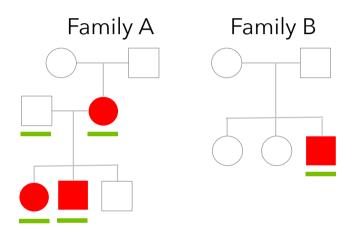


Phevor Combines Multiple Biomedical Ontologies for Accurate Identification of Disease-Causing Alleles in Single Individuals and Small Nuclear Families. Singleton M., Guthery SL., Voelkerding KV., et al., Reese MG., Jorde LB., Huff CD., Yandell M. (2014). Am J Hum Genet. **2014 Apr 3**; 94(4):599-610.



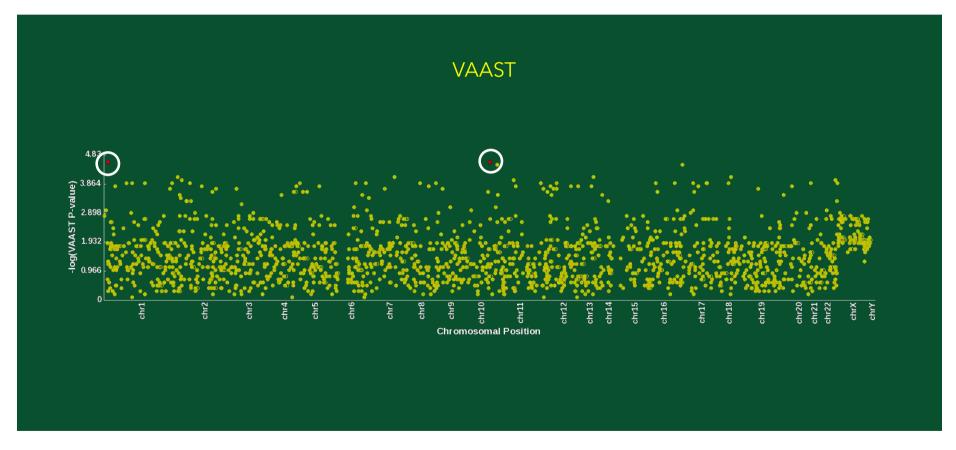
Fabric Genomics[™]


How Phevor Works (seeding)


How Phevor Works (seeding)

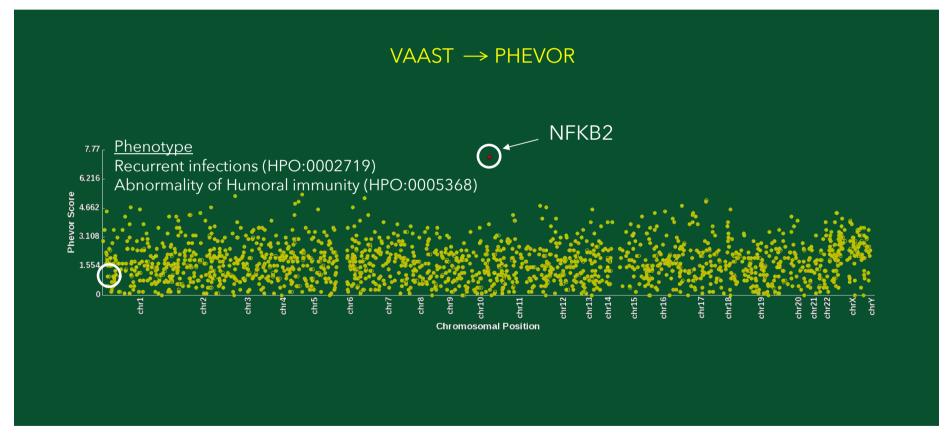
How Phevor Works (combining ontologies)

Common Variable Immune disease (CVID)

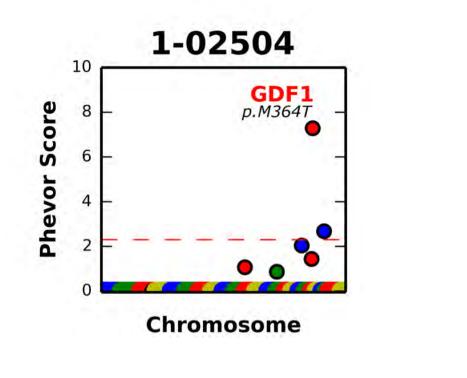


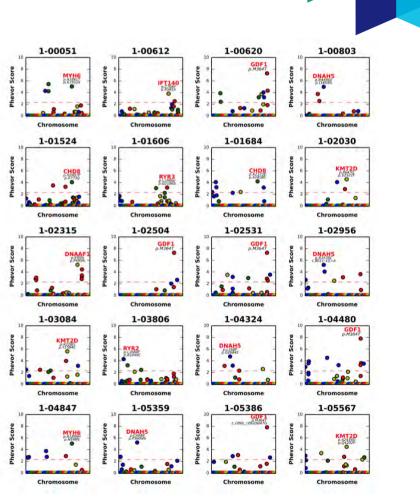
<u>Phenotype</u> Recurrent infections (HPO:0002719) Abnormality of Humoral immunity (HPO:0005368)

affected
unaffected


exome sequenced

A Family with Common Variable Immune disease (CVID)


K. Chen MD, EM. Coonrod PhD, A. Kumanovics, K. Voelkerding MD, et al.


A Family with Common Variable Immune disease (CVID)

K. Chen MD, EM. Coonrod PhD, A. Kumanovics, K. Voelkerding MD, et al.

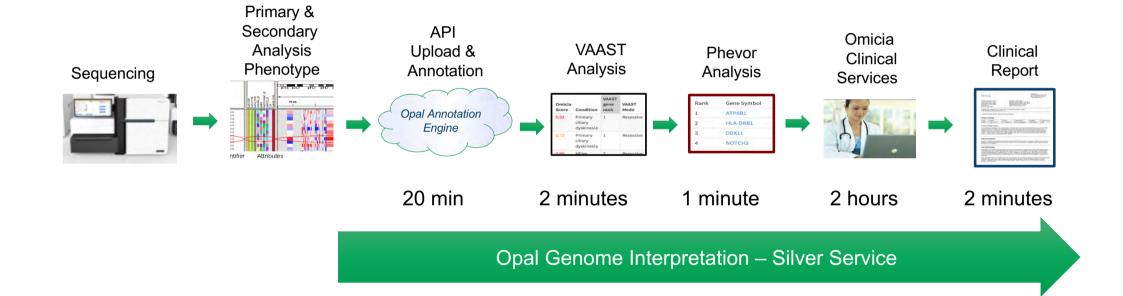
Selected *Recessive* Congenital Heart disease genes identified with VAAST & PHEVOR in a cohort of *2,871 congenital heart disease probands* *

*Jin SC., Homsy J. et al. Contribution of rare transmitted and de novo variants among 2,871 congenital heart disease probands. Submitted.

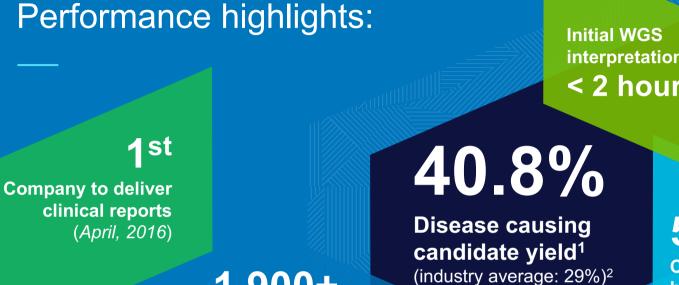
Country Sequencing Program Genomics England & 100,000 Genomes Project

Goal:

Sequence 100,000 whole genomes to discover and diagnose the genetic basis for rare disease and cancer



The UK's 100,000 Genomes Project


is the largest initiative of its kind in the world. It is ground-breakingand is establishing protocols and standards that will be applied across the entire healthcare system.

> SIR JOHN CHISOLM, EXECUTIVE CHAIR OF GENOMICS ENGLAND

Fabric Delivers Automated, Intelligent Interpretation Workflows

1.900 +Cases returned as of February 2018

interpretation < 2 hours

53.3%

Candidates identified by Phevor-VAAST as Top hit¹

> **Delivering reports** to multiple main program sites

Genomic

engla

¹Identified disease-causing candidates in first 609 cases. Babcock et al. Increased Yield of Clinically Relevant Candidates in the UK 100.000 Genomes Project Using Opal[™] Clinical for Hereditary Disease. Poster session presented at: ACMG; 2017 Mar 21-25; Phoenix, AZ.

²"The success rate of 29 percent, which is about twofold higher of conventional genetic evaluations for such patients, makes WES a reasonable diagnostic approach for patients on a diagnostic odyssey" says Dr. Lazaridis, Mayo Clinic, Individualized Medicine Clinic.

Fabric Genomics, Inc. Confidential

21

Recent case – solved by Fabric Genomics

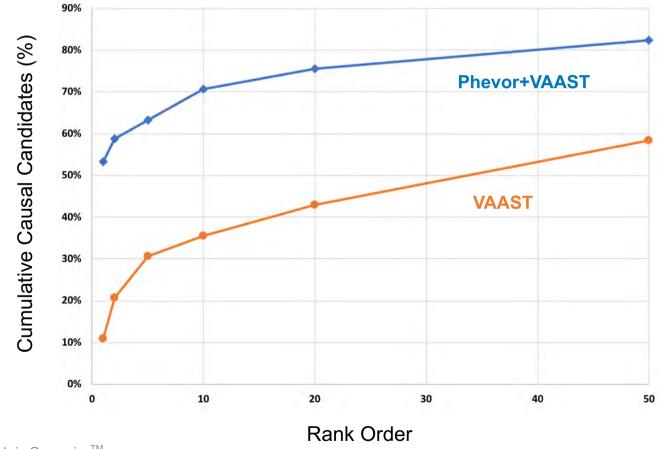
Patient diagnosed with:

- Intellectual Disability
- Multiple Epiphyseal Dysplasia

Findings:

- Misdiagnosis
- Fabric Genomics discovered a change in OBSL1 gene, associated with Three M syndrome*

Genomi


engla

Result:

 Patient was accurately diagnosed with Three M syndrome

*Three M syndrome is an extremely rare genetic disorder characterized by low birth weight, short stature (dwarfism), characteristic abnormalities of the head and facial (craniofacial) area, distinctive skeletal malformations, and/or other physical abnormalities.

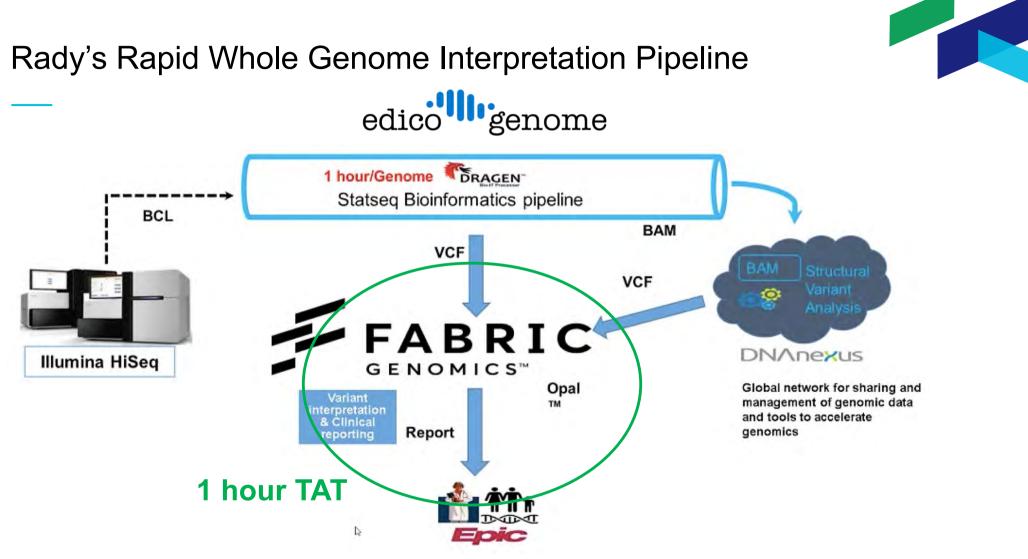
Phevor significantly improves ranking of variants

Genome England cases

- Causative candidate
 variants n=644
- 450 Probands with positive findings

Fabric Genomics[™]

Rady Children's Hospital Launches Rapid Genome Service


- Goal: Set up rapid genome testing for newborns and infants in Intensive Care Unit
- **Need:** 1 hour turnaround time for interpretation
- With Fabric Genomics' solution: Delivering 1 hour interpretation made it possible to now routinely turnaround a sample from collection, sequencing to clinical report in < 36 hours

Diagnosing acutely ill babies is a race against the clock, which is why it's so essential for physicians to have access to technology that will provide answers faster and help set the course of treatment.

Stephen Kingsmore, M.D., D.Sc., president and CEO of Rady Children's Institute for Genomic Medicine

Rady's Rapid Whole Genome Interpretation Pipeline

Case Study: Fabric Genomics / Rady Children's Hospital STAT Pediatric Clinical Genome – <u>19.5</u> hours from sample to report

FABRIC

New GUINNESS WORLD RECORDSTM Title Set for Fastest genetic diagnosis

Date: February 12, 2018

in f 💟 🚭 😋

compressed the time needed to decode rare genetic disorders in newborns through DNA sequencing to less than a day. RCIGM set a new GUNNESS WORLD RECORDS[®] till for Fastest genetic diagnosis in 19.5 hours. Dr. Kingenore has pioneered the rapid turnaround and delivery of genetic test results to neonatal and pediatric intersiste care. (NGL/VIPC) physicians.

Scientists at the Rady Children's Institute for Genomic Medicine (RCIGM) have

Fabric Geomics' platform was a critical technology enabler, Fabric is clinical decision support software enables rapid diagnosis by helping to pirpoint the source of genetic disease out of hundreds of possibilities. Fabrics platform includes the Fabric STAT pipelene that provides guaranteed rapid turnaround time for urgent pediatrics genomic tests.

Genetic diseases are the leading cause of death in infants in North America. affecting an estimated four percent of newborns. Rare genetic diseases also account for approximately 15 percent of admissions to children's hospitals.

"Our evolving ability to find the answers to metical mysteries through rapid Whele Genome Sequencing is provided polyce for babies and children with race, genetic diseases," said Dr. Kingamore. "By speeding delivery of genomic insights, we are equipping physicians with the information they need to provide precision care for the youngest and note tragle patients."

recomment in handrad to attaced this could establish tees to Ottachen Kinesense and

Jenome Sequencing (Part 1) is blocker Knapmore, HQ, Disc, in the President and CED of the Rahy PietSufrac Genomics and spanne Medicine Institute. Dr. Knapsmore spoke at this... is at More

Dr. Stephen Kingsmore - A Vision for Transforming Medicine with Rapid Genome Sequencing (Part 1)

Dr. Stephen Kingsmore, MD, DSc. In the Prevident and ELD of the Rady Pediatric Genomics and Systems Multicine matitude. Dr. Kingsmore paske in the longuised Previous Medicine Landers Summir Cas summer. We spalle with him adout his program for explore sequences, the genomes of wilk (indexe) and what him) looking for in the field of next previous researching and purchase.

AllSeq Plicase fell us a filterior about what prompted your move to the Rady Peduline Genomics and Systems Medico Institute

>52%

Diagnostic Candidate

January 26, 2017 Francis Collins: Terure as NHA Director Extended Under New Administration Betriesda MD - The Trump administration has asked ourrent National Institutes of Health (NHR) Director Francis Collins to remain in his position for the

1 in VI

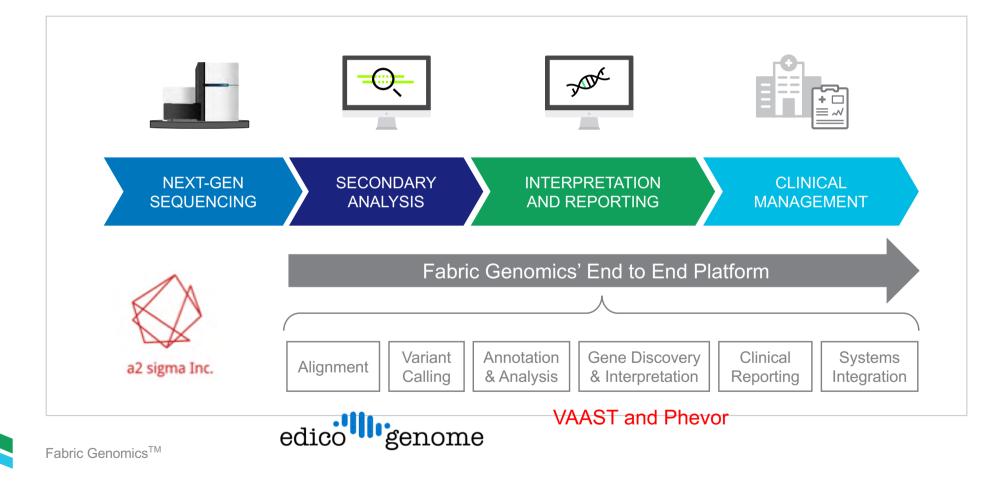
2 STO ARRIVAL PARCILIUM AUDICINE INTERNA INMUN AUDICINE INTERNA INMUN AUDICINE INTERNA INTERNA INTERNA PRECISION MEDICINE LEAD FRS. SUMMIT

Fabric Genomics, Inc. Confidential

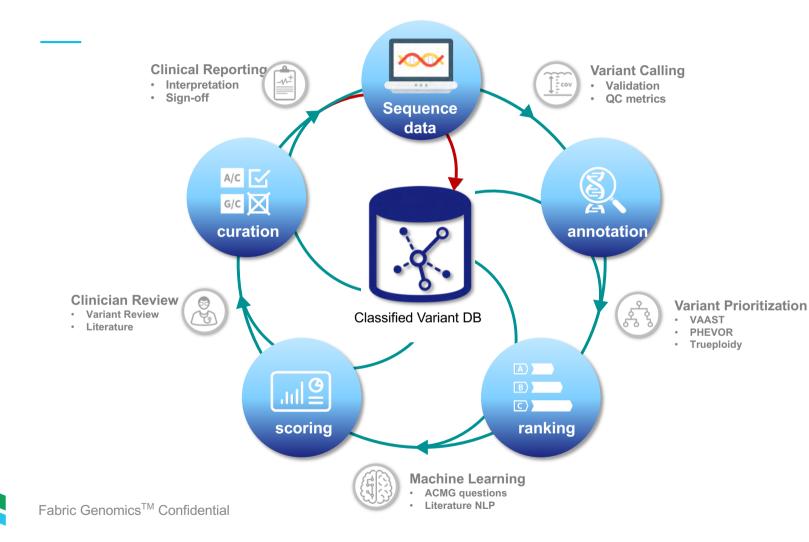
Find the right answer faster using VAAST/Phevor

	Candidate	Avg Rank Causative	% Cases Where Causative Variant Ranked in				
	Yield	Variant	Top 1	Тор 20			
Rady Institute for Genomic Medicine	52%	4.5	60%	93%			
Genomics England	45%	12.5	45%	74%			
Labcorp	54%	12	52%	89%			

Immediately identify causative variant in ~50% of cases


Matched control Rady Children Institute

Financing Modeling

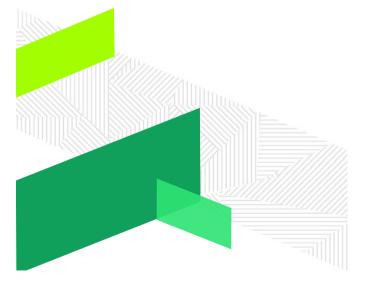

					Admission to			Decrease in				Medicaid		Commercial		
	Subject				Diagnosis, days/(Test		Hospital stav			WRVU	Medicaid Payment	Payment Avoided,	Commercial Payment,	Payment Avoided,		
	ID	Site	Presentation	Gene		Type of cost	(days)	• •	WRVU	Avoided	, \$1000	\$1000 (%)	\$1000	\$1000 (%)		
	6041	4			4 (rWGS)	Case: Rapid diagnosis and precision treatment	18		120		85		157			
	6041	NICU	Seizures	KCNQ2	12 (c+d)	Model: Case + 6 week time to diagnosis	59	41 (69%)	280	156 (57%)	234	149 (64%)	429	272 (63%)		
	Ctrl 1				42 (std)	Control: With standard time to diagnosis	29		326	205 (63%)	210	125 (60%)	383	226 (59%)		
	6014			NEB1	7 (rWGS)	Case: no muscle biopsy	n.a.		n.a.							
7	Ctrl 2	NICU	Hypotonia	n.a.	n.a.	Control: whole hospitalization	35	2 (6%)	246 24 (8%)	165	32 (20%)	302	59 (20%)			
	CUTZ			n.a.	11.a.	Control: muscle biopsy, pathology, postop. care x 1 day	2		24		33		59			
	6026	PICU C	holestasis & CHD	JAG1	3 (rWGS)	Case: Kasai cancelled	11		n.d.		40		72			
	Ctrl 3	GI	Cholestasis	n.a.	n.a.	Control: Kasai surgery whole hospitalization	14	3 (21%)	104	90 (87%)	80	54 (68%)	147	100 (68%)		
	curs	01	enolestasis	n.u.	11.0.	Control: Kasai surgery & postop. care only	14		90		54		100			
	6053	NICU	Hypoglycemia	ABCC8	7 (rWGS)	Case: rapid diagnosis and transport for surgery	10	21 (68%)	105	175 (62%)	60	108 (64%)	109	197 (64%)		
	0055	Nico	nypogiyeenna	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 10000	28 (std)	Model: average published time to diagnosis	31	21 (00/0)	280	175 (0270)	168		306	
						Case: Palliative care started 250 days after admission	250		1,714	1,624	1,941		3,538			
	6012	NICU	Complex	ARID1B	26 (rWGS)	Model: Case + 6 weeks antibiotics	292	262 (90%)	2,001	(81%)	2,587	2,362 (91%)	4,707	4,299 (91%)		
						Model: Palliative care started 30 days after admitted	30		377 (82)	(01/0)	224		408			
	6011	. GI	Cholestasis	NPC1	7 (rWGS)	Case: First hospitalization (rWGS unavailable)	8	15 (35%)) 26 33 (56%) 33	33 (56%)	26	27 (51%)	47	50 (51%)		
ļ		0	610163(03)3		, (1000)	Case: Second hospitalization (rWGS available)	15			55 (5070)	27		50			
4	Average						76	57 (76%)	499	354 (71%)	546	477 (87%)	994	826 (83%)		

Classified Variant Database to Provide Largest, Highest Quality Database of Human Genetic Variation via Network Effect

- Variants classification are shared within organization
- Option to share with other labs
- Share at different levels to protect patient privacy
- Leverage massive data and sharing to enable more accurate diagnoses

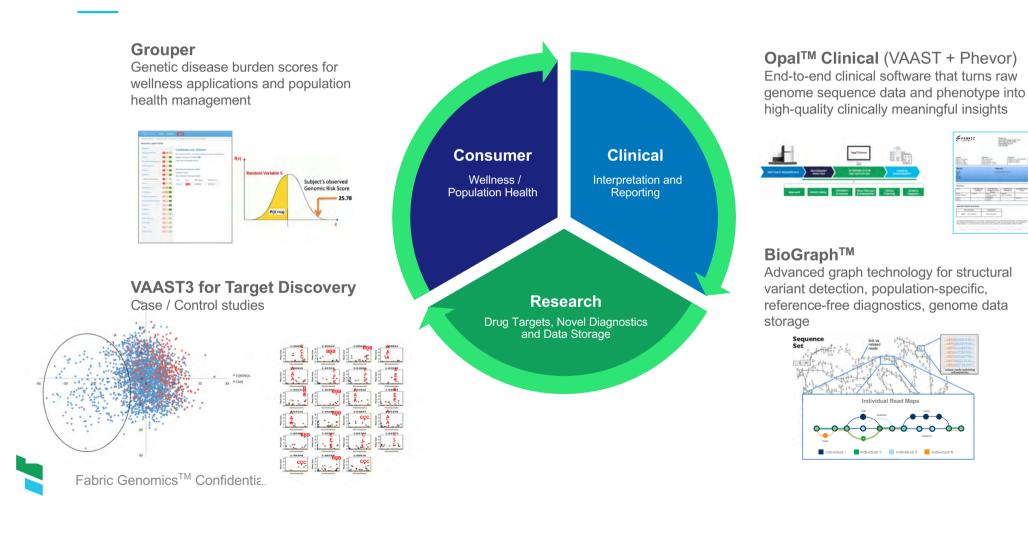
Opal[™] Clinical – Tertiary Analysis Decision Support System for Hereditary Disease

- 90+ public and proprietary databases and analysis algorithms per variant
- All testing types supported: solo, trio, and flexible family
- Proven health systems integrations with electronic medical records (Epic and Cerner) and LIS


Case Studies / Clinical Reports / Interpret VariantsClinical Report ID:6521Test:Non-syndromic Epilepsies PanelGenome ID:214317Test:Consequence, No infronsGenome ID:214317Consequence, No infronsCOSMIC Included:FalseCose Studies Panel_STXBP1 frameshift_NA12882_IL_e E nonCose FiltersShow/Hide ColumnsInterpret VariantsC Reset FiltersShow/Hide ColumnsReport FiltersGenePositionChangeIoVEffectZygosityCorrerageEvAC AFScoreAllCGPR38chr5A \rightarrow GmissenseO274360.32228Bene SymbolGCPA6chr8G \rightarrow AmissenseO2000000.945GenomeGCPA6chr8G \rightarrow AmissenseO30090.000200.945GenePositionChangeISVFilters990.000200.945BechaleGCPA6chr8G \rightarrow AmissenseO30090.000200.945Gene SymbolGCPA6chr8C \leftarrow AmissenseO30050.000200.945Gene SymbolGCPA6chr8C \leftarrow AmissenseO30053002500.000200.945Gene SymbolGG GPR38chr5C \leftarrow AmissenseO30053002500.000200.945	Opal 4.13.1 Home	Pro	jects Admin						Case	Studies - cs	onrigby@
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ports	Interpret Va	mants							
Report Filters Gene Position Change IGV Effect Zygosity Quality IKG AF Omicia All \bullet Gene Position Change IGV Effect Zygosity Coverage EAAC AF Score All \bullet G GPR98 Chr5 $A \rightarrow G$ missense \bullet O 27436 0.32228 0.945 Gene Symbol G CPA6 chr5 $A \rightarrow G$ missense \bullet O 3809 0.00020 99 0.945 Gene Symbol G CPA6 chr8 $G \rightarrow A$ missense O 3809 0.00020 99 0.00032 0.945 Filter By G GPR98 chr5 C $- T$ missense O 50165 0.33726 0.808 Require G STXBP1 chr9 Chr9 CFA $- T$ missense O 34872 Φ 0.888 Zygosity: any Exclude G	Genome ID:	214	317	nel_STXBP1frame	shift_NA12882_IL. <mark>t</mark>	E ROH	COSP	Filter: IIC included:	Consequence, No introns False		
Import Name GQ EVS AF Omicial Society Reporting Status Gene Position Change IGV Effect Zygosity Coverage EAAC AF Score All \bullet G GPR38 Chr5 $A \rightarrow 6$ missense OO 27436 0.32228 0.32238 0.34236 Gene Symbol G CPA6 chr6 G $\rightarrow A$ missense OO 3809 0.00020 0.945 Gene Symbol G CPA6 chr8 G $\rightarrow A$ missense OO 3809 0.00020 0.945 Filter By G GPR38 chr5 C $\rightarrow A$ missense OO 3809 0.00020 0.945 Require G GPR38 chr5 C $\rightarrow T$ missense OO 3809 0.00020 0.945 Exclude G STXBP1 chr9 Core T missense OO 34872 Q^{*} 0.808 Zygosity: any G GPR98	Interpret Variants							C Reset Filter	s Show,	/Hide Columns	+ A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Gene	Position	Change	IGV	Effect	Zygosity	GQ	EVS AF	Omicia Score
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		0	GPR98	89988504	c.7034A>G	*	missense	•0	99	0.29139	0.945
Require G Ornse Reguire Instance O SU(3) 0.35/48 0.0004 Exclude G STXBP1 ch9 p.Pro1987Leu 9 0.305/48 0.35/48 0.0004 Zygosity: any Exclude: No call, Fail VCF Filter G STXBP1 ch9 CA-C frameshift OO 34872 9 0.6 G GPR98 Ch75 C.754,755deAt7 frameshift OO 34872 9 0.3 0.3 0.3 0.3 0.3 0.0 0.0 9 0.3 0.0 0.0 9 0.0 0.0 9 0.0		Ø	CPA6	68334782	c.1271C>T	*	missense	•0	99	0.00046	0.945
Exclude Grad STROFT Strop Stred Stred<		ß	GPR98	89979698	c.5960C>T	*	missense	•0	99	0.30536	0,808
Exclude: No-call, Fail VCF Filter G GPR98 chr5 A→G missense ●O 117344 0.34884 0.751 Exclude: No-call, Fail VCF Filter G GPR98 chr5 c.6695A>G 99 0.31810 99 0.31810 99 0.31810 99 0.31810 99 0.31810 99 0.31810 99 0.31810 99 0.31810 99 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 0.31810 91 91 0.31810 91 91 0.31810 91 91 0.31810 91 91 91 0.31810 91 91 91 91 91 91 91 91 91 91 91 91 91		0	STXBP1		c.754_755delAT		frameshift	•0	98		
S CHIS CHIS <thchis< th=""></thchis<>		g	GPR98	89985882	c.6695A>G	*	missense	•0	99	0.31810	0.751
136683984 c.3685A>G 99 0.00046		0	GPR98	90151630	c.17667C>G	*	missense	•0	99	0.00008	0.718
		ß	KCNT1	138683984	c.3685A>G	*	missense	•0	99	0.00046	0.645
		-				-			-		-

Thank you!

martin@fabricgenomics.com



FABRIC GENOMICS^M

A global healthcare platform for genomic data analysis

Comprehensive Computational Genomics Platform

